On the Signless Laplacian Spectral Radius of Cacti
نویسندگان
چکیده
منابع مشابه
On the Signless Laplacian Spectral Radius of Cacti
A cactus is a connected graph in which any two cycles have at most one vertex in common. We determine the unique graphs with maximum signless Laplacian spectral radius in the class of cacti with given number of cycles (cut edges, respectively) as well as in the class of cacti with perfect matchings and given number of cycles.
متن کاملThe Randić index and signless Laplacian spectral radius of graphs
Given a connected graph G, the Randić index R(G) is the sum of 1 √ d(u)d(v) over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v respectively. Let q(G) be the largest eigenvalue of the singless Laplacian matrix of G and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملSpectral radius and signless Laplacian spectral radius of strongly connected digraphs
Article history: Received 15 April 2014 Accepted 5 May 2014 Available online 29 May 2014 Submitted by R. Brualdi MSC: 05C20 05C50 15A18
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Croatica Chemica Acta
سال: 2016
ISSN: 0011-1643,1334-417X
DOI: 10.5562/cca3018